首页> 外文OA文献 >Learning a Deep Embedding Model for Zero-Shot Learning
【2h】

Learning a Deep Embedding Model for Zero-Shot Learning

机译:学习零搜索学习的深度嵌入模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Zero-shot learning (ZSL) models rely on learning a joint embedding spacewhere both textual/semantic description of object classes and visualrepresentation of object images can be projected to for nearest neighboursearch. Despite the success of deep neural networks that learn an end-to-endmodel between text and images in other vision problems such as imagecaptioning, very few deep ZSL model exists and they show little advantage overZSL models that utilise deep feature representations but do not learn anend-to-end embedding. In this paper we argue that the key to make deep ZSLmodels succeed is to choose the right embedding space. Instead of embeddinginto a semantic space or an intermediate space, we propose to use the visualspace as the embedding space. This is because that in this space, thesubsequent nearest neighbour search would suffer much less from the hubnessproblem and thus become more effective. This model design also provides anatural mechanism for multiple semantic modalities (e.g., attributes andsentence descriptions) to be fused and optimised jointly in an end-to-endmanner. Extensive experiments on four benchmarks show that our modelsignificantly outperforms the existing models.
机译:零镜头学习(ZSL)模型依赖于学习联合嵌入空间,在该联合嵌入空间中,可以将对象类别的文本/语义描述以及对象图像的视觉表示都投影到最近的邻居搜索中。尽管在其他视觉问题(例如图像捕捉)中学习文本和图像之间的端到端模型的深层神经网络取得了成功,但深层ZSL模型却很少存在,与使用深层特征表示但不学习模型的ZSL模型相比,它们显示出的优势很小到端嵌入。在本文中,我们认为使深层ZSL模型成功的关键是选择正确的嵌入空间。我们建议将视觉空间用作嵌入空间,而不是将其嵌入语义空间或中间空间。这是因为在该空间中,随后的最近邻居搜索将受中枢性问题的影响要小得多,因此变得更加有效。该模型设计还提供了一种自然的机制,可以以端到端的方式共同融合和优化多种语义模态(例如属性和句子描述)。在四个基准上进行的大量实验表明,我们的模型明显优于现有模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号